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This paper develops a general theory for linear propagation of acoustic waves in a gas
enclosed in a two-dimensional channel and in a circular tube subject to temperature
gradient axially and extending infinitely. A ‘narrow-tube approximation’ is employed
by assuming that a typical axial length is much longer than a span length, but no
restriction on a thickness of thermoviscous diffusion layer is made. For each case,
basic equations in this approximation are reduced to a spatially one-dimensional
equation in terms of an excess pressure by making use of a method of Fourier
transform. This equation, called a thermoacoustic-wave equation, is given in the
form of an integro-differential equation due to memory by thermoviscous effects.
Approximations of the equations for a short-time and a long-time behaviour from an
initial state are discussed based on the Deborah number and the Reynolds number. It
is shown that the short-time behaviour is well approximated by the equation derived
previously by the boundary-layer theory, while the long-time behaviour is described
by new diffusion equations. It is revealed that if the diffusion layer is thicker than
the span length, the thermoviscous effects give rise to not only diffusion but also
wave propagation by combined action with temperature gradient, and that negative
diffusion may occur if the gradient is steep.

1. Introduction
Thermoacoustics has attracted much attention over the past few decades from the

viewpoint of potential in application to novel heat engines. Central phenomena are
due to thermoviscous effects of a gas in contact with a solid wall subject to temperature
gradient. If the gradient is steep, it happens that the effects cause instability of the gas
and eventually give rise to its spontaneous oscillations. Although such phenomena
have been known empirically or experimentally since 19th century, no analysis of
stability was made until the pioneering work initiated by Kramers (1949) and Rott
(1969). They attempted to seek a marginal condition for the onset of the Taconis
oscillations (Taconis et al. 1949) in a helium-filled tube in cryogenics. Although
Kramers (1949) failed, Rott (1969, 1973) succeeded in deriving the conditions, which
are confirmed experimentally by Yazaki, Tominaga & Narahara (1980). Since then,
Rott’s linear theory has played a fundamental role and has been applied to design
experimental devices (Swift 1988, 2002).
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When temperature gradient is absent, the thermoviscous effects appear normally to
give rise to damping of acoustic waves. Many theoretical works have been made since
Kirchhoff (1868) derived a dispersion relation rigorously by taking both effects due to
viscous and thermal diffusion. Kirchhoff’s theory was fully reproduced by Rayleigh
(1945). In discussing the wave propagation there are two important parameters: the
ratio of a tube radius to a typical axial wavelength and the ratio of a typical thickness
of diffusion layer to the radius. While the former ratio is usually much smaller than
unity, there are various cases depending on the latter ratio. If it is much smaller
than unity, the thermoviscous effects are confined only in a thin boundary layer on
the tube wall, outside of which lossless and one-dimensional propagation may be
assumed. Such a case is called a ‘wide tube’ and is discussed by Kirchhoff (1868). On
the contrary, the other limit where the diffusion layer is extremely thick is discussed
by Rayleigh (1945) and is called a ‘narrow tube.’

While Weston (1953) classified various cases based on Kirchhoff’s dispersion
relation, it is shown by Zwikker & Kosten (1949) and Tijdeman (1975) that the
approximation based on the small ratio of the tube radius to the wavelength is
practically useful. Recently Yazaki, Tashiro & Biwa (2007) have made experiments
to check the approximations by Kirchhoff and Rayleigh and to confirm the validity
of the results by Tijdeman (1975) over a very wide range of frequency normalized by
a characteristic thermal diffusion time. It is then unveiled that the wide tube provides
a good approximation especially for a propagation velocity even when the thickness
of the diffusion layer becomes comparable with a tube radius.

The author has developed a boundary-layer theory for acoustic waves in a wide
tube subject to temperature gradient. Although the theory, once used by Kramers
(1949), was later regarded as being incapable of describing the Taconis oscillations
by Rott (1969), it has now turned out to be applicable to derive a marginal condition
of the Taconis oscillations (Sugimoto & Yoshida 2007). The failure by Kramers and
Rott results from the use of a regular asymptotic expansion in terms of a thickness
of boundary layer. Quite recently, it has also been applied to derivation of marginal
conditions for the Sondhauss tube and resonators (Sugimoto & Takeuchi 2009).
Because the theory is now extended to non-harmonic disturbances by taking account
of memory due to the thermoviscous effects, it can be incorporated into a framework
of weakly nonlinear theory (Sugimoto & Shimizu 2008). Using this theory, initial
instability and ensuing emergence of self-excited Taconis oscillations are simulated
numerically (Shimizu & Sugimoto 2009, 2010). Such a success has motivated us to
clarify not only a reason as to why the boundary-layer theory is applicable but
also a condition under which the theory is valid. Further, it suggests us to seek a
wave equation in such a general case that the diffusion layer is not restricted to be
thin.

To this end, this paper develops a general theory for linear propagation of acoustic
waves in a gas confined in a two-dimensional channel and in a circular tube subject to
temperature gradient and extending infinitely. While the thickness of thermoviscous
diffusion layer is kept arbitrary, use is made of a ‘narrow-tube approximation’ in
the sense that a typical axial length is assumed to be much longer than a span
length. An adjective ‘narrow’ in this context is used differently from that by Rayleigh.
This approximation is simply the one used by Zwikker & Kosten (1949) and is
called ‘low-reduced frequency’ by Tijdeman (1975) and Rott (1969) for the analysis
of the Taconis oscillations. But no other assumptions are made, for example as to a
form of temporal variations. Basic equations in the narrow-tube approximation are
reduced rigorously to a one-dimensional integro-differential equation in terms of an
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Figure 1. Illustration of a two-dimensional channel of width 2H filled with a thermoviscous
gas and subject to non-uniform temperature distribution axially. The temperature of the gas
in a quiescent equilibrium state Te is assumed to be equal to the temperature of the plates
Tw imposed externally. An excess pressure p′ over p0 in the equilibrium is uniform over a
cross-section, while profiles labelled (a) and (b) are of the axial velocity of gas u′ with respect
to y for typical cases of a thin diffusion layer and of a thick layer, respectively. In the former
case, the thermoviscous effects are confined in a thin layer, i.e. a boundary layer, designated by
a region between the plate surface and the broken curve. In the latter case, the diffusion layer
fills fully the channel width. Here vb represents velocity directed normal to the plate surface
and away from it at the edge of the boundary layer, while s and q represent, respectively,
shear stress acting on the gas at the plate surface and heat flux flowing into the gas through it.

excess pressure. This is called a thermoacoustic-wave equation. Approximations of
this equation for a short-time and a long-time behaviour from an initial state are
discussed based on the Deborah number and the Reynolds number.

In what follows, starting from the linearized theory for an ideal gas of Newtonian
fluid, basic equations in the narrow-tube approximation are presented in the case of
a two-dimensional channel, from which a thermoacoustic-wave equation is derived
by applying a method of Fourier transform in § 2. No account of a thermal coupling
between the gas and the solid wall is taken into account. Approximations of the
equation are made, respectively, for a short-time behaviour and a long-time behaviour
in § 3. In § 4, modifications in the case of a circular tube are briefly described and the
thermoacoustic-wave equation is derived. Section 5 is devoted to discussions of the
thermoacoustic-wave equations in both cases and their approximations.

2. Formulation of a two-dimensional problem
2.1. Linearized basic equations

Suppose a two-dimensional propagation of acoustic waves occurs in a gas enclosed in
a channel of infinite length between two parallel plates subject to temperature gradient
along them. Taking the x-coordinate along the wave propagation, the y-coordinate is
taken normal to the plates with its origin at a midpoint between them separated by
distance 2H (see figure 1). The temperature of both plates at a position x is assumed
to be equal with each other.

In a quiescent equilibrium state where no gravity is assumed, a pressure of gas
takes a uniform value p0 throughout. A temperature of gas Te satisfies ∇ · (k∇Te) = 0,
k being a thermal conductivity and Te must be equal to the temperature of the
plates Tw(x) at the plate surfaces. If k is assumed to be a constant independent of
Te and the channel width is much narrower than a typical axial length in Tw , Te is
solved asymptotically as Te = Tw + (d2Tw/dx2)(H 2 − y2)/2 + . . . . As long as the axial
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distribution of Tw is gentle enough for a contribution from d2Tw/dx2 to be negligible,
the temperature of gas may be set equal to that of the plates. This approximation is
stipulated quantitatively by a following requirement on Tw

H 2

Tw

∣∣∣∣d2Tw

dx2

∣∣∣∣ � H

Tw

∣∣∣∣dTw

dx

∣∣∣∣ � 1. (2.1)

The present theory neglects the leftmost quantity and takes account of non-uniformity
of temperature distribution up to its first-order derivative dTw/dx. Since Te is now
identified as Tw , no distinction will be made between them and Te(x) will be used
in the following. With the pressure and temperature thus specified, a density of gas
is determined by an equation of state. If the ideal gas is assumed, the density ρe(x)
satisfies Charles’ law with ρeTe held constant. Here and hereafter a quantity with the
subscript e is understood to be dependent on x through Te.

Assuming infinitesimally small disturbances from the above equilibrium state, the
equation of continuity, Navier–Stokes equation and equations of energy and of state
are linearized around the state as follows:

∂ρ ′

∂t
+ ∇ · (ρev

′) = 0, (2.2)

ρe

∂v′

∂t
= −∇p′ + ∇

[
2µ

(
e′ − 1

3
I∇ · v′

)]
+ ∇(µv∇ · v′), (2.3)

ρecp

(
∂T ′

∂t
+ v′ · ∇Te

)
=

∂p′

∂t
+ ∇ · (k∇T ′), (2.4)

p′

p0

=
ρ ′

ρe

+
T ′

Te

, (2.5)

in −∞ <x < ∞ and −H <y <H , with ∇Te =(dTe/dx, 0) where ρ, p, T , v [= (u, v)],
e [= (∂vi/∂xj + ∂vj/∂xi)/2 with (x1, x2) = (x, y) and (v1, v2) = (u, v) for i, j = 1 or 2 ]
and I denote, respectively, density, pressure, absolute temperature, velocity vector,
rate of strain tensor and unit tensor, the prime attached implying a disturbance from
the respective equilibrium values, and all variables are assumed to depend on x, y

and t , t being the time measuring from a remote past t → −∞; µ, µv and cp denote,
respectively, a shear viscosity, a bulk viscosity and a specific heat at constant pressure.

The viscosities and thermal conductivity depend on the temperature and pressure
in general. (But the kinetic theory of gas suggests no dependence on the pressure and
the exponent β in (2.8) takes 1/2 (see, for example Sone 2002).) On the right-hand
side of (2.3), the pressure dependence gives rise to (∂µ/∂p)∇p′ and (∂µv/∂p)∇p′ and
therefore yields nonlinear terms in the disturbances. In contrast, the temperature
dependence gives rise to (∂µ/∂T )∇T and (∂µv/∂T )∇T , and linear terms remain
because ∇T = ∇Te + ∇T ′ ≈ ∇Te. Expanding µ, µv and their derivatives around the
local equilibrium values, (2.3) may be rewritten in the linearized approximation as

ρe

∂v′

∂t
= −∇p′ + µe∆v′ +

(
1

3
µe + µve

)
∇∇ · v′

+ 2
∂µ

∂T

∣∣∣∣∣
e

∇Te

(
e′ − 1

3
I∇ · v′

)
+

∂µv

∂T

∣∣∣∣∣
e

∇Te(∇ · v′), (2.6)
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where the symbol ...|e designates evaluation at the equilibrium state. In (2.4) as well,
the term ∇ · (k∇T ) is treated in a similar manner. Thus (2.4) is rewritten as

ρecp

(
∂T ′

∂t
+ v′ · ∇Te

)
=

∂p′

∂t
+ ke∆T ′ +

∂k

∂T

∣∣∣∣∣
e

∇Te · ∇T ′, (2.7)

where ke denotes the value of k in the equilibrium state.
Experimental data suggest that the shear viscosity and heat conductivity may be

fitted by a power law of the temperature given by

µ

µ0

=

(
T

T0

)β

and
k

k0

=

(
T

T0

)β

, (2.8)

where quantities with the suffix 0 imply respective values in a reference state and
β takes a positive constant between 0.5 and 0.6 for air. No relation for µv is given
because of its few data, and also because the term with µv does not appear in the
following analysis. In contrast to the viscosity and heat conductivity, the specific heat
cp and the Prandtl number Pr defined by µcp/k change little so that their values
may be regarded as being constant.

Boundary conditions at the plate surfaces are imposed as follows:

u′ = v′ = T ′ = 0 at y = ±H. (2.9)

Here, the last condition needs a remark. It assumes that both plates have a large
heat capacity. Thus the temperature of the plates is always kept at Tw so that the
temperature of gas adjacent to them is equal to Tw . No account of a thermal coupling
with the solid is taken. Boundary conditions at both infinity of x are not specified.

2.2. Narrow-tube approximation

At first, it is noticed that there are three typical length-scales involved in this problem
besides H . Letting a typical angular frequency be ω, one is a wavelength a/ω where a

is a typical speed of wave propagation. This speed is taken to be an adiabatic sound
speed a0 (=

√
γp0/ρ0) at a reference state, γ being the ratio of specific heats.

Another is a typical length of the temperature gradient, l, estimated by

l ∼
∣∣∣∣ 1

Te

dTe

dx

∣∣∣∣
−1

, (2.10)

where the symbol ∼ implies equality in order of magnitude. Using l, the leftmost
quantity in (2.1) is estimated to be of order (H/l)2 (�1). Since this is to be neglected,
the temperature gradient should not be steep enough to violate this assumption. The
other is a thickness of a viscous diffusion layer

√
ν/ω, ν being a typical kinematic

viscosity. Of course, a thickness of a thermal diffusion layer
√

κ/ω may be taken,
κ (= k/ρcp) being a typical thermal diffusivity. But because the Prandtl number
Pr (= µcp/k = ν/κ) takes a value of order unity for usual gases, the thermal diffusion
layer is represented by the viscous one.

Among the three lengths, the wavelength a/ω may be assumed to be much longer
than H in usual thermoacoustic devices operating at an audible frequency, while l

should be much longer than H , as stipulated by (2.1). The thickness
√

ν/ω is much
smaller than a/ω and l. The present theory assumes that l is shorter than a/ω or
comparable with it, while

√
ν/ω is arbitrary in comparison with H . To include a

special case without temperature gradient (l → ∞) for comparison, a typical axial
length is denoted by L rather than l. When temperature gradient is absent, L is taken



94 N. Sugimoto

to be a/ω, while when the gradient is present, L is taken to be a smaller one between
l and a/ω. In any case, L should be much longer than H .

Thus three dimensionless parameters are introduced as follows:

H

L
≡ λ � 1,

ωL

a
≡ 1

χ
� O(1) and

√
ν/ω

H
≡ δ = O(1), (2.11)

where χ takes a larger value than unity, but it is equal to unity if temperature
gradient is absent. A reduction to be guided by the first two assumptions of (2.11),
i.e. ωH/a = λ/χ � 1, may be called a low-frequency approximation or a long-wave
approximation or a narrow-tube approximation. On the other hand, if δ � 1 where
the diffusion layer may be treated as a boundary layer, this case is called a ‘wide
tube,’ while if δ 
 1, it is called a ‘narrow tube,’ as mentioned in § 1.

If λ/χ � 1 and λ/χ � δ−1 (
√

νω/a � 1), this is called a low-reduced frequency by
Tijdeman (1975) because he claimed that use of ‘wide’ or ‘narrow’ is misleading. But
this paper uses ‘narrow’ from a standpoint that the ‘narrowness’ of the tube should
be measured in comparison with the axial length L, not with the thickness of the
diffusion layer. The approximation by the first two conditions of (2.11) is thus called
a ‘narrow-tube approximation’ here. As the third condition specifies the thickness of
diffusion layer, the terms ‘thin’ and ‘thick’ are used for the diffusion layer as δ � 1 and
δ 
 1, respectively. The former is a case to which the boundary-layer approximation
is applicable. For a circular tube, δ is defined by a tube radius R instead of H . In
passing, Pr/2δ2 is often called ωτ by experimentalists (Yazaki et al. 2007), τ being a
typical thermal diffusion time R2/2κ .

Using this narrow-tube approximation, the magnitude of each term in (2.2), (2.6) and
(2.7) is estimated. The x- and y-coordinates are measured by L and H , respectively,
while the time t is measured by ω−1. In (2.2), the order of ρ ′ and the one of v′ are
estimated in terms of u′ as follows:

ρ ′

ρ0

∼ χ
u′

a0

and v′ ∼ λu′. (2.12)

It is to be noted that if χ 
 1, the relative change in density is much greater than
the one in the axial speed. When the gradient is absent, of course, both changes are
comparable. The spanwise velocity is much smaller than the axial one.

From the x-component of (2.6), a balance between the inertia term and the pressure
gradient estimates the order of variation of p′ to be

p′

p0

∼ 1

χ

u′

a0

. (2.13)

This suggests that the relative change in the pressure is smaller than the one in
the axial speed if χ is large. In the viscous terms, the spanwise curvature ∂2u′/∂y2

dominates over the other terms to balance with the inertia term as far as δ is O(1).
The terms due to temperature dependence of µ and µv remain secondary because
∂µ/∂T |e =βµe/Te and ∂µv/∂T |e = βµve/Te. Using the first assumption of (2.11) in
the y-component of (2.6), it follows, to the lowest order, that the spanwise gradient
of the pressure should vanish so that the pressure is uniform over a cross-section of
the channel. In (2.7) as well, the spanwise curvature of the temperature dominates
over the axial one. Changes in density, pressure and temperature are linked with each
other through the equation of state. If χ is large, a relative variation of density is
estimated to be much larger than the one of pressure. It is found from (2.5) that a
relative change in density should balance with the one in temperature with opposite
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sign as

ρ ′

ρe

≈ −T ′

Te

∼ χ2 p′

p0

. (2.14)

This is nearly an isobaric process.
Summarizing the above results, the basic equations are simplified by the narrow-

tube approximation as follows:

∂ρ ′

∂t
+

∂

∂x
(ρeu

′) +
∂

∂y
(ρev

′) = 0, (2.15)

ρe

∂u′

∂t
= −∂p′

∂x
+ µe

∂2u′

∂y2
, (2.16)

0 = −∂p′

∂y
, (2.17)

ρecp

(
∂T ′

∂t
+ u′ dTe

dx

)
=

∂p′

∂t
+ ke

∂2T ′

∂y2
, (2.18)

together with the equation of state (2.5). Here it should be remarked that this system
of equations is the same as the one used by Rott (1969). If no temperature gradient
is assumed, it is equivalent to that used by Tijdeman (1975).

2.3. Solutions by the method of Fourier transform

Thanks to (2.17), the pressure may be regarded as being uniform over a cross-section
of the channel. This consequence stems from the first assumption of (2.11) and holds
also for the wide tube. Since p′ is written as p′(x, t), the other physical variables are
expressed in term of p′. Solutions to (2.15)–(2.18) with (2.5) are sought by applying a
method of Fourier transform defined by

F{u′} =
1√
2π

∫ ∞

−∞
u′(x, y, t)eiωtdt ≡ û′(x, y, ω), (2.19)

with its inverse transform given by

F−1{û′} =
1√
2π

∫ ∞

−∞
û′(x, y, ω)e−iωtdω = u′(x, y, t). (2.20)

Applying the method to (2.16), a solution û′ is sought so as to satisfy the boundary
conditions. It is expressed in terms of p′ as

û′ = − 1

ρe

σ −1 ∂p̂′

∂x
f, (2.21)

with σ = −iω where f is defined as

f (x, y) = 1 − cosh(y/Hδe)

cosh(1/δe)
, (2.22)

and δe is defined by

δe(x) =
1

H

(νe

σ

)1/2

, (2.23)

with νe(x) = µe/ρe. Here σ −1/2 is defined to take a positive real part for a positive
value of ω.
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Substituting this solution into (2.18) and using the boundary conditions, T̂ ′ is
obtained as follows:

T̂ ′ =
1

ρecp

p̂′fP +
1

ρe

dTe

dx
σ −2 ∂p̂′

∂x

(
− Pr

1 − Pr
f +

1

1 − Pr
fP

)
, (2.24)

where fP is defined as

fP (x, y) = 1 − cosh(y
√

Pr/Hδe)

cosh(
√

Pr/δe)
. (2.25)

The subscript P is used to indicate dependence of fP on Pr and therefore to imply
thermal effects because δe/

√
Pr [= (κe/σ )1/2/H ] measures the thickness of thermal

diffusion layer relative to H , κe(x) being ke/ρecp . Unless P is attached, f designates
the function fP in which Pr is set equal to unity formally. From f , conversely, fP is
recovered by substituting δe/

√
Pr in place of δe. Such a use of the subscript P will

also be made in the following.
Now that T̂ ′ is available, ρ̂ ′ is expressed in terms of p̂′ by using a following relation

derived from (2.5) transformed:

ρ̂ ′ =
ρe

p0

p̂′ − ρe

Te

T̂ ′ =
γ

a2
e

p̂′ − (γ − 1)ρecp

a2
e

T̂ ′, (2.26)

where ae(x) is a local adiabatic sound speed
√

γp0/ρe, and a2
e is alternatively written

as a2
e = (γ − 1)cpTe. Substituting (2.26) into (2.15) and integrating it with respect to y,

ρev̂
′ is obtained as follows:

ρev̂
′ = − 1

a2
e

[
σ p̂′ − ∂

∂x

(
a2

e σ
−1 ∂p̂′

∂x

)]
y

− ∂

∂x

(
√

νeσ
−3/2 ∂p̂′

∂x
g

)
− γ − 1√

Pr

√
νe

a2
e

σ 1/2p̂′gP

+
1

Te

dTe

dx

√
νeσ

−3/2 ∂p̂′

∂x

[
Pr

1 − Pr
g − 1

(1 − Pr)
√

Pr
gP

]
+ const., (2.27)

where g and gP are defined, respectively, by

g(x, y) =
sinh(y/Hδe)

cosh(1/δe)
, (2.28)

and

gP (x, y) =
sinh(y

√
Pr/Hδe)

cosh(
√

Pr/δe)
, (2.29)

the const. being an arbitrary integration constant.
Imposing the boundary conditions v̂′ = 0 at y = ±H , the constant must vanish and

a relation for p̂′ is available as follows:

σ p̂′ − ∂

∂x

(
a2

e σ
−1 ∂p̂′

∂x

)
+

∂

∂x

[
a2

e

√
νe

H
σ −3/2 ∂p̂′

∂x
g(x, H )

]

+
γ − 1√

Pr

√
νe

H
σ 1/2p̂′gP (x, H ) − a2

e

Te

dTe

dx

√
νe

H
σ −3/2 ∂p̂′

∂x

×
[

1

1 − Pr
g(x, H ) − 1

(1 − Pr)
√

Pr
gP (x, H )

]
= 0, (2.30)
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with g(x, H ) = tanh(δ−1
e ) and gP (x, H ) = tanh(

√
Prδ−1

e ), where note that da2
e /dx =

a2
e T

−1
e dTe/dx. Equation (2.30) governs a behaviour of the pressure transformed.

Before proceeding to the inverse transform, we look at the problem in terms of mean
quantities over the cross-section.

2.4. Equations averaged over the cross-section and thermoacoustic-wave equation

Defining the mean φ̄ of a quantity φ(x, y, t) averaged over the cross-section by

1

2H

∫ +H

−H

φ(x, y, t)dy ≡ φ̄(x, t), (2.31)

(2.15), (2.16) and (2.18) may be rewritten as follows:

∂ρ̄ ′

∂t
+

∂

∂x

(
ρeū

′) = 0, (2.32)

ρe

∂ū′

∂t
= −∂p′

∂x
+

s

2H
, (2.33)

ρecp

(
∂T̄ ′

∂t
+ ū′ dTe

dx

)
=

∂p′

∂t
+

q

2H
, (2.34)

where s and q denote, respectively, shear stress acting on the gas at the plate surfaces
and heat flux flowing into the gas through them, which are given respectively by

s = µe

∂u′

∂y

∣∣∣∣∣
y=+H

− µe

∂u′

∂y

∣∣∣∣∣
y=−H

, (2.35)

and

q = ke

∂T ′

∂y

∣∣∣∣∣
y=+H

− ke

∂T ′

∂y

∣∣∣∣∣
y=−H

. (2.36)

Equations (2.32)–(2.34) are combined to eliminate ρ ′, u′ and T ′ into a single equation
for p′:

∂2p′

∂t2
− ∂

∂x

(
a2

e

∂p′

∂x

)
=

a2
e

cpTe

∂

∂t

( q

2H

)
− ∂

∂x

(
a2

e

s

2H

)
. (2.37)

While the left-hand side represents lossless propagation in the gas non-uniform in
temperature, the first and second terms on the right-hand side represent, respectively,
the effects due to the heat flux in the form of a monopole and the shear stress in
the form of a dipole (see, for example Howe 1998). In the present case, s and q are
determined as a part of the solution.

Using the solution (2.21) obtained, the shear stress is given in the transformed form
as

ŝ = 2
√

νe(σ
−1/2 tanh δ−1

e )
∂p̂′

∂x
. (2.38)

To make an inverse transform, it is useful to note the following formulas:

1√
2π

F−1
{
σ −1/2 tanh δ−1

e

}
=

1√
πt

G
( νet

H 2

)
h(t), (2.39)

where G is defined by

G(t) = 1 + 2

∞∑
n=1

(−1)n exp

(
−n2

t

)
, (2.40)
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and h(t) is a unit step function. Note that t in (2.40) and h(t) implies a dimensionless
argument. In the present context, no confusion would occur with the dimensional
time. The transform (2.39) is obtained by expanding the hyperbolic tangent function
tanhX for |X| 
 1 as

tanhX = 1 + 2

∞∑
n=1

(−1)ne−2nX, (2.41)

X being δ−1
e , and using the transform

F
{

1√
πt

exp

(
−b

t

)
h(t)

}
=

1√
2π

σ −1/2 exp
[
−2(bσ )1/2

]
, (2.42)

b being a positive constant (p. 12 & p. 123 in Oberhettinger 1957). It is also noted
that ∫ ∞

0

1√
πt

G(t)dt = 1. (2.43)

Using these formulas, the inverse transform of ŝ is expressed in the form of a
convolution integral given by

s = 2
√

νeM
(

∂p′

∂x

)
, (2.44)

where M(φ) designates a functional of a function φ(x, t), which is defined as a special
case of a following functional MP (φ) by setting Pr to be equal to unity formally:

MP [φ(x, t)] ≡ 1√
π

∫ t

−∞

G[νe(t − τ )/P rH 2]√
t − τ

φ(x, τ )dτ. (2.45)

In a similar way, the inverse transform of σ q̂ is expressed in the following form:

∂q

∂t
= 2cpTe

√
νe

{
− γ − 1√

Pr
MP

(
1

a2
e

∂2p′

∂t2

)

+
1

Te

dTe

dx

[
1

1 − Pr
M

(
∂p′

∂x

)
− 1

(1 − Pr)
√

Pr
MP

(
∂p′

∂x

)]}
. (2.46)

Here it is to be noted that

MP

[
∂φ

∂t
(x, t)

]
=

∂

∂t
MP [φ(x, t)]. (2.47)

Now that the shear stress and the heat flux are expressed in terms of p′, (2.37) is
given as follows:

∂2p′

∂t2
− ∂

∂x

(
a2

e

∂p′

∂x

)
+

∂

∂x

[
a2

e

√
νe

H
M

(
∂p′

∂x

)]
+

γ − 1√
Pr

√
νe

H
MP

(
∂2p′

∂t2

)

− a2
e

Te

dTe

dx

√
νe

H

[
1

1 − Pr
M

(
∂p′

∂x

)
− 1

(1 − Pr)
√

Pr
MP

(
∂p′

∂x

)]
= 0. (2.48)

This equation is called a thermoacoustic-wave equation for the excess pressure p′

of the gas in the channel. It is also obtainable directly without averaging over the
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cross-section by making an inverse transform of (2.30) after σ is multiplied. The
physical meaning of each term is clear. While the first two terms represent lossless
propagation in the presence of temperature gradient, the third term stem from the
shear stress and the remaining ones stem from the heat flux. In particular, note that
the fourth term is present even when no temperature gradient is present and the last
term represents the thermoviscous effects combined with the temperature gradient.
The last term would become pronounced for a gas with Pr close to unity but vanish
in the limit of no-heat-conducting gas as Pr → ∞.

Equation (2.48) is no longer a differential equation but an integro-differential
equation. The thermoviscous effects introduce memory (hereditary) effects even in the
Newtonian fluids in such a geometrical configuration as diffusion layers adjacent to a
solid surface. The memory effects are the essence of the thermoacoustic phenomena.

If an initial-value problem is considered with p′ = 0 for t < 0, then p′ is set equal
to p′h(t) and the lower bounds of the integral in M and MP are set equal to zero.
Because (2.48) is free from a choice of time origin, the lower bound of the integrals
may set, without any loss of generality, at either zero or minus infinity. It is remarked
that the coefficient

√
νe/H in (2.48) may be incorporated into the integrals by noting a

dimensionless variable νet/H
2 instead of t . This suggests that a short-time behaviour

corresponds to a case with large H , roughly speaking, whereas a long-time behaviour
corresponds to a case with small H .

Finally, the mean values of the physical variables other than the pressure are
presented. It is convenient to express them in the form of temporal derivatives as
follows:

ρe

∂ū′

∂t
= −∂p′

∂x
+

√
νe

H
M

(
∂p′

∂x

)
, (2.49)

∂2ρ̄ ′

∂t2
=

∂2p′

∂x2
− ∂

∂x

[√
νe

H
M

(
∂p′

∂x

)]
, (2.50)

ρecp

∂2T̄ ′

∂t2
=

a2
e

γ − 1

{
γ

a2
e

∂2p′

∂t2
− ∂2p′

∂x2
+

∂

∂x

[√
νe

H
M

(
∂p′

∂x

)]}
, (2.51)

where (2.30) and therefore (2.48) have been used. The mean value of v′ vanish of
course because of the odd function in y. These are the alternative forms of (2.32)–
(2.34) expressed in terms of p′ alone and the functional involved is due to the shear
stress.

3. Approximations of the thermoacoustic-wave equation
3.1. Properties of the relaxation function

It is revealed from the explicit forms of the shear stress and the heat flux that the
viscous and thermal diffusive effects give rise to memory. For example, a current
value of the shear stress at t is determined by a whole past history of the pressure
gradient in τ (< t). The function G[νe(t − τ )/H 2]/

√
π(t − τ ) weighs the magnitude of

dependence of the stress on the value of ∂p′/∂x in the past tracked back by a time
t −τ . In analogy with viscoelasticity (see, for example Christensen 1982), this function
may be called a relaxation function here, although that relates a current stress to a
past history of a strain rate and the pressure gradient has no dimension of it.

The arguments of G, i.e. νet/H
2 and νet/P rH 2 are also to be remarked. These

dimensionless quantities correspond to the inverse of a Deborah number De in
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rheology (Reiner 1964; Tanner 1985), which is here defined by

De ≡ H 2/νe

t
. (3.1)

This number measures a viscous diffusion time H 2/νe relative to a time concerned.
Besides H 2/νe, a thermal diffusion time H 2/κe may be taken. Then the Deborah
number becomes H 2/κet , which is equal to PrH 2/νet . As was mentioned earlier,
however, the viscous diffusion time is taken here in defining the Deborah number.

If an initial-value problem is concerned and De is large enough, i.e. a short-time
behaviour is concerned compared with the diffusion time, the relaxation function may
be approximated as

1√
πt

G
( νet

H 2

)
=

1√
πt

[
1 − 2 exp

(
−H 2

νet

)
+ · · ·

]
. (3.2)

Thus, G may be set equal to unity as νet/H
2 → 0.

But as the value of De becomes small, the sum in G expressed by (2.40) becomes
delicate. To see a limiting value of G as t → ∞, it is useful to invoke the following
formula of the theta function ϑ4(0, q), which is sometimes written as ϑ0(0) (p. 579 in
Abramowitz & Stegun 1972):

1 + 2

∞∑
n=1

(−1)nqn2

=
∞
�
n=1

(1 − q2n)
∞
�
n=1

(1 − q2n−1)2 =

√
2

π
k′K(k), (3.3)

with log(1/q) = πK(k′)/K(k) where k and k′ are the modulus of the complete elliptic
integral K(k) and the complimentary modulus defined by k′2 = 1 − k2. Although q

and k have been defined, respectively, as the heat flux and the thermal conductivity,
no confusion would occur in this context. In the limit as q → 1, the sum

∑∞
n=1(−1)n

is found to be equal to −1/2. Thus G(t) tends to vanish as t → ∞. Note that as
q → 1, k tends to unity and K(k) tends to diverge. Using the asymptotic expressions
K(k) ≈ (1/2) log[8/(1 − k)] and K(k′) ≈ π/2 as k → 1 (p. 591 in Abramowitz &
Stegun 1972), the expression on the rightmost term in (3.3) is approximated as√

2

π
k′K(k) ≈ [2(1 − k)]1/4

√
1

π
log

(
8

1 − k

)
, (3.4)

with (1 − k)/8 ≈ exp(−π2νet/H
2). Using this expression, an asymptotic behaviour of

G/
√

πt as t → ∞ is evaluated as

1√
πt

G
( νet

H 2

)
≈

2
√

νe

H
exp

(
−π2

4

νet

H 2

)
. (3.5)

But this is available by executing the inverse transform of (2.39) directly. It is
rewritten in the following form of the inverse Laplace transform:

1√
2π

F−1
{
σ −1/2 tanh δ−1

e

}
=

1

2πi

∫ +i∞

−i∞
σ −1/2 tanh

[(
σ

νe

)1/2

H

]
eσ tdσ. (3.6)

Note that σ 1/2 has a branch point at the origin, but it disappears in the integrand.
Because simple poles are located only in the left half-plane of σ at σ = −(2n −
1)2π2νe/4H 2 (n= 1, 2, 3, · · ·), the integral vanishes for t < 0. For t > 0, it is evaluated
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Figure 2. Graph of the relaxation function G(t)/
√

πt against t in the intervals 0 < t � 10 in
(a) and 0.1 � t � 0.4 in (b), respectively. In (a), the profile of G(t)/

√
πt appears to coincide

with the asymptotic expressions: 1/
√

πt for t < 0.2 and 2 exp(−π2t/4) for t > 0.2. In (b), the
dots indicate the values of G(t)/

√
πt numerically calculated, and they are seen to move on

from one asymptotic branch to the other over a narrow transition interval as t varies.

by the residue theorem. Thus it follows that

1√
πt

G
( νet

H 2

)
=

2
√

νe

H

∞∑
n=1

exp

[
− (2n − 1)2π2

4

νet

H 2

]
h(t). (3.7)

The asymptotic expression (3.5) agrees with the leading term of (3.7).
Figure 2 shows the graph of G(t)/

√
πt together with the two leading asymptotic

expressions of (3.2) and (3.5) with νe/H
2 suppressed. In the scale of t shown in

figure 2(a), no visible difference from the asymptotic expressions is seen over the
interval 0 < t � 10. The function G(t)/

√
πt tends to diverge as t → 0 and tends to

vanish as t → ∞. It appears to coincide with (3.2) for t < 0.2, while with (3.5) for
t > 0.2. Figure 2(b) blows up the graph in the interval 0.1 � t � 0.4, where the dots
indicate the values of G(t)/

√
πt numerically calculated by using (2.40). It is surprising

to find that the dots are located just on the asymptotic curves except for a narrow
transition interval in 0.15 < t < 0.3. This finding is very useful because G(t)/

√
πt may

be approximated substantially by either one of the two asymptotic expressions so
that the treatment of the functionals will be facilitated.

3.2. Approximation of the thermoacoustic-wave equation based on a Deborah number

Making use of the properties of the relaxation function, the thermoacoustic-wave
equation (2.48) is approximated as De 
 1 or De � 1. When an initial-value problem
at t = 0 is considered with p′ = 0 for t < 0, and while De 
 1, (3.2) may be truncated
at the first term as

1√
πt

G
( νet

P rH 2

)
≈ 1√

πt
. (3.8)

This approximation may also be regarded as a case of large H formally. For De 
 1
in (2.48), the contributions due to the memory remain small so that the first two
terms may balance mainly with each other. Substituting (3.8) into (2.48), replacing
∂2p′/∂t2 in the fourth term by (∂/∂x)(a2

e ∂p
′/∂x), and using (d/dx)(a2

e

√
νe) = (3/2 +



102 N. Sugimoto

β/2)a2
e

√
νeT

−1
e dTe/dx, it follows that

∂2p′

∂t2
− ∂

∂x

(
a2

e

∂p′

∂x

)
+

a2
e

√
νe

H

[
C

∂−1/2

∂t−1/2

(
∂2p′

∂x2

)
+

(C + CT )

Te

dTe

dx

∂−1/2

∂t−1/2

(
∂p′

∂x

)]
= 0,

(3.9)

with

C = 1 +
γ − 1√

Pr
and CT =

1

2
+

β

2
+

1√
Pr + Pr

, (3.10)

where the derivative of minus half-order is defined over a semi-infinite interval by
(Gel’fand & Shilov 1964)

∂−1/2φ

∂t−1/2
≡ 1√

π

∫ t

−∞

φ(x, τ )√
t − τ

dτ, (3.11)

and the lower bound may be set equal to zero for the initial-value problem. Equation
(3.9) is of the same form as the one derived previously by using the boundary-
layer approximation (Sugimoto & Yoshida 2007). But note that the temperature
dependence of the viscosity and heat conduction is included here. It is remarked that
(3.9) is always valid as long as De is much greater than unity, even if no idea of the
boundary layer is introduced.

Next is a case with De � 1 for a long-time behaviour from an initial state. This
case corresponds formally to a case with small H . In this case, the initial state is
almost forgotten and the lower bound of the integrals may be set to be minus infinity.
If G(t)/

√
πt is viewed over such a long time, it may be approximated to be a delta

function in light of the property (2.43) as

1√
πt

G
( νet

P rH 2

)
≈

√
Pr

νe

Hδ(t), (3.12)

where note that δ(bt) = δ(t)/b, b being a positive constant. If this approximation is
used in the functional (2.45), it is reduced to

MP (φ) ≈
√

Pr

νe

Hφ(x, t). (3.13)

Substituting this relation in (2.48), it follows that the wave equation is reduced to
an equation γ ∂2p′/∂t2 = 0. This trivial case is also derived from the transformed
equation (2.30) by taking the limit |δ−1

e | → 0 to set g(x, H ) → δ−1
e and gP →

√
Prδ−1

e .
Then (2.30) is reduced to γ σ p̂′ = 0.

Thus, corrections due to deviation of the relaxation function from the delta function
are desired. They are systematically derived by expanding g(x, H ) and gP (x, H ) with
respect to δ−1

e , i.e. by using the expansion tanhX = X − X3/3 + 2X5/15 + · · · for

|X| � 1, X being either δ−1
e or δ−1

e /
√

Pr . It then follows from the lowest (apart from
the above trivial case) relation that

γ σ p̂′ − ∂

∂x

(
a2

eH
2

3νe

∂p̂′

∂x

)
+

a2
eH

2

3νeTe

dTe

dx

∂p̂′

∂x
= 0. (3.14)

As the magnitude of the second and third terms relative to the first one is of order
|δe|−2χ2, it follows from the balance among them that |δe| ∼ χ . While (3.14) is valid
for an extremely long-time behaviour, note that this is also applicable to a case that
the diffusion layer is extremely thick.
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Let a new diffusivity α be defined by

α =
a2

eH
2

3γ νe

, (3.15)

where ae/
√

γ is a local, isothermal sound speed
√

p0/ρe. If no temperature dependence
of viscosity is assumed, then α is a constant. But because α is proportional to T −β

e ,
it decreases as Te increases unlike usual diffusions. Using α, (3.14) is transformed
inversely to yield

∂p′

∂t
− ∂

∂x

(
α

∂p′

∂x

)
+

α

Te

dTe

dx

∂p′

∂x
= 0. (3.16)

The memory integral now disappears in the limit as t → ∞ and the diffusion equation
revives. But it is revealed that the temperature gradient gives rise to the third term
responsible for wave propagation.

If further higher-order terms are included, (3.14) is modified as

σ p̂′ − ∂

∂x

(
α

∂p̂′

∂x

)
+

α

Te

dTe

dx

∂p̂′

∂x
− (γ − 1)Prα

a2
e

σ 2p̂′

− 2

5
(1 + Pr)

αH 2

νeTe

dTe

dx
σ

∂p̂′

∂x
+

2

5

∂

∂x

(
αH 2

νe

σ
∂p̂′

∂x

)
= 0. (3.17)

The higher-order terms are of order |δe|−4χ2 (∼|δe|−2) in comparison with the first three
terms. Using the lowest relation (3.14) in (3.17), the last term may be approximated
as

2

5

∂

∂x

(
αH 2

νe

σ
∂p̂′

∂x

)
≈ 2

5

H 2

νe

(
σ 2p̂′ − αβ

Te

dTe

dx
σ

∂p̂′

∂x

)
. (3.18)

Thus the higher-order equation is written as

∂p′

∂t
− ∂

∂x

(
α

∂p′

∂x

)
+

α

Te

dTe

dx

∂p′

∂x

+

[
6

5
γ − (γ − 1)Pr

]
α

a2
e

∂2p′

∂t2
− 2

5
(1 + β + Pr)

αH 2

νeTe

dTe

dx

∂2p′

∂t∂x
= 0. (3.19)

It is to be remarked that the fourth term given by the second-order derivative of t is
so small in order that it cannot govern the temporal evolution, though it is higher in
order of differentiation than the first one. Discussions on the equations (3.9), (3.16)
and (3.19) will be given in § 5.4.

4. Modifications in the case of a circular tube
4.1. Changes in derivation process of thermoacoustic-wave equation

The results obtained in the preceding section are qualitatively valid for an
axisymmetric wave propagation in a circular tube of radius R and of infinite length,
but need to be modified quantitatively. Because the mathematical procedures are the
same, their description is kept minimum and only changes are given.

Instead of y, a radial coordinate r is taken and a radial velocity component is
designated by v. The condition (2.1) is modified by replacing H with R. Equations
(2.15)–(2.18) are replaced by the following ones:

∂ρ ′

∂t
+

∂

∂x
(ρeu

′) +
1

r

∂

∂r
(rρev

′) = 0, (4.1)
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ρe

∂u′

∂t
= −∂p′

∂x
+

µe

r

∂

∂r

(
r
∂u′

∂r

)
, (4.2)

0 = −∂p′

∂r
, (4.3)

ρecp

(
∂T ′

∂t
+ u′ dTe

dx

)
=

∂p′

∂t
+

ke

r

∂

∂r

(
r
∂T ′

∂r

)
, (4.4)

in −∞ <x < ∞ and 0 � r <R. The boundary conditions require that u′ = v′ = T ′ = 0
at r = R and they are to be finite at r = 0.

Defining the mean value of a variable φ(x, r, t) over the cross-section by

1

πR2

∫ R

0

2πrφ(x, r, t)dr ≡ φ̄(x, t), (4.5)

(2.37) remains valid but s/2H and q/2H are replaced, respectively, by 2s/R and 2q/R

with the definitions of the shear stress and heat flux modified as

s = µe

∂u′

∂r

∣∣∣∣∣
r=R

and q = ke

∂T ′

∂r

∣∣∣∣∣
r=R

. (4.6)

The transformed solutions û′ and T̂ ′ are given by (2.21) and (2.24), respectively,
with f and fP replaced by

f = 1 − I0(r/Rδe)

I0(1/δe)
, (4.7)

and

fP = 1 − I0(r
√

Pr/Rδe)

I0(
√

Pr/δe)
, (4.8)

respectively, with

δe =
1

R

(νe

σ

)1/2

, (4.9)

where I0 and I1 below denote the modified Bessel functions of zeroth and first order,
respectively. While (2.26) for ρ̂ ′ remains valid, (2.27) for ρev̂

′ still holds with const. = 0
and the proviso that y is replaced by r/2, and g and gP are replaced, respectively, by

g(x, r) =
I1(r/Rδe)

I0(1/δe)
, (4.10)

and

gP (x, r) =
I1(r

√
Pr/Rδe)

I0(
√

Pr/δe)
. (4.11)

A functional NP (φ) corresponding to MP (φ) is introduced as

NP [φ(x, t)] ≡
∫ t

−∞
Θ

[
νe(t − τ )

PrR2

]
φ(x, τ )dτ, (4.12)

where Θ is defined in terms of the inverse transform as

1√
2π

F−1

{
σ −1/2 I1(

√
Pr/δe)

I0(
√

Pr/δe)

}
= Θ

( νet

P rR2

)
, (4.13)
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and N(φ) denotes NP (φ) with Pr = 1 formally. As will be shown later, Θ vanishes
for t < 0. The shear stress s and the heat flux q are expressed as follows:

s =
√

νeN
(

∂p′

∂x

)
, (4.14)

∂q

∂t
= cpTe

√
νe

{
− γ − 1√

Pr
NP

(
1

a2
e

∂2p′

∂t2

)

+
1

Te

dTe

dx

[
1

1 − Pr
N

(
∂p′

∂x

)
− 1

(1 − Pr)
√

Pr
NP

(
∂p′

∂x

)]}
. (4.15)

The thermoacoustic-wave equation for the gas in the circular tube is given by

∂2p′

∂t2
− ∂

∂x

(
a2

e

∂p′

∂x

)
+

∂

∂x

[
2a2

e

√
νe

R
N

(
∂p′

∂x

)]
+

2(γ − 1)√
Pr

√
νe

R
NP

(
∂2p′

∂t2

)

− 2a2
e

Te

dTe

dx

√
νe

R

[
1

1 − Pr
N

(
∂p′

∂x

)
− 1

(1 − Pr)
√

Pr
NP

(
∂p′

∂x

)]
= 0. (4.16)

Although the relaxation function Θ is different from G/
√

πt , (4.16) is of the same
form as (2.48) if 1/H and M are identified, respectively, as 2/R and N. The coefficient
2/R comes from the ratio of the wetted perimeter to the cross-sectional area. For
the channel of unit thickness in the direction normal to a sheet of paper, the wetted
perimeter is 2 with no account of the lateral sides, while the area is 2H . In this context,
the mean values of the physical variables over the cross-section of the circular tube
are given by the same expressions as (2.49)–(2.51), provided that 1/H is replaced with
2/R and M with N.

4.2. Relaxation function for the circular tube

As Θ has a dimension of inverse square root of time, it is made dimensionless by
setting Θ(t) = (νe/P rR2)1/2θ(t) in (4.13), t being dimensionless in this context. Then
θ is expressed in the form of the inverse Laplace transform as

θ(t) =
1

2πi

∫ +i∞

−i∞
z−1/2 I1(z

1/2)

I0(z1/2)
eztdz. (4.17)

Simple poles of the integrand are located in the left half-plane of z at z = −j 2
n , where

jn (n= 1, 2, 3, · · ·) denote roots z = jn of J0(z) = 0 (0 < j1 <j2 <j3 · · ·) with j1 ≈ 2.40,
j2 ≈ 5.52 and j3 ≈ 8.65. Thus θ is obtained as

θ(t) = 2

∞∑
n=1

e−j2
n th(t). (4.18)

Incidentally the integral of θ satisfies∫ ∞

0

θ(t)dt = 2

∞∑
n=1

j−2
n =

1

2
. (4.19)

Although (4.18) is valid except for t =0, it is inappropriate for a small value of t .
An alternative expression for t � 1 is available by expanding the integrand of (4.17)
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Figure 3. Graphs of the relaxation function θ (t) against t and the leading term of (4.18) and
the higher-order approximation given by (4.21) where the profile of θ (t) appears to coincide
with the asymptotic expression 1/

√
πt − 1/2 −

√
t/16π for t < 0.05 and with the expression

2 exp(−j 2
1 t/4) with j1 ≈ 2.40 for t > 0.2.

around infinity of z. Executing the expansion as

z−1/2 I1(z
1/2)

I0(z1/2)
= z−1/2 − 1

2
z−1 − 1

8
z−3/2 · · · , (4.20)

it is found from the formulas of the inverse Laplace transform that

θ =
1√
πt

− 1

2
−

√
t

16π
+ · · · , (4.21)

for 0 < t � 1. Using these expressions, it follows that

Θ
(νet

R2

)
≈ 1√

πt
−

√
νe

4R2
− νe

R2

√
t

16π
+ · · · , (4.22)

for 0 <νet/R
2 � 1, while

Θ
(νet

R2

)
≈

2
√

νe

R
exp

(
−j 2

1

νet

R2

)
, (4.23)

for νet/R
2 
 1.

Comparing θ(t) with G(t)/
√

πt , both behaviours are quantitatively different from
each other. For t � 1, the leading behaviour is the same but higher-order terms in θ

contribute to non-exponential decay. For t 
 1, on the other hand, θ decays faster
than G(t)/

√
πt because π/2 < j1. But if R/2 is identified as H , then (4.23) decays

slower than (3.5). This interpretation seems to be appropriate because the gas in the
circular tube is surrounded by the tube wall in all angle so that the thermoviscous
effects appear more pronouncedly than those in the channel.

Figure 3 plots the value of θ(t) by dots together with the asymptotic expression
(4.21) taken up the third order and the leading expression of (4.18) drawn by curves.
The integral (4.17) is evaluated numerically by using the double exponential formula
due to Ooura & Mori (1991). It is seen in this case as well that θ switches from lying
on (4.21) to (4.18) over a narrow transition interval 0.05 < t < 0.2, though two more
terms than 1/

√
πt are necessary in (4.21).
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4.3. Approximation of the thermoacoustic-wave equation

Equation (4.16) is also approximated just as in the case of the channel. For a large
value of De, the leading terms of Θ agrees with that of (3.2). Thus it is found that
(3.9) holds provided H is replaced by R/2 as

∂2p′

∂t2
− ∂

∂x

(
a2

e

∂p′

∂x

)
+

2a2
e

√
νe

R

[
C

∂−1/2

∂t−1/2

(
∂2p′

∂x2

)
+

(C + CT )

Te

dTe

dx

∂−1/2

∂t−1/2

(
∂p′

∂x

)]
= 0.

(4.24)

For a small value of De as well, use is made of the expansion I1(X)/I0(X) = X/2 −
X3/16 + X5/96 + · · · for |X| � 1. The higher-order equation is derived by the same
way as the previous one. The definition of the diffusivity α is modified to be

α =
a2

eR
2

8γ νe

. (4.25)

If R/2 is identified as H , α is larger than that for the channel. Thus the approximate
equation for a long-time behaviour is given by

∂p′

∂t
− ∂

∂x

(
α

∂p′

∂x

)
+

α

Te

dTe

dx

∂p′

∂x

+

[
4

3
γ − (γ − 1)Pr

]
α

a2
e

∂2p′

∂t2
− 1

6
(1 + β + Pr)

αR2

νeTe

dTe

dx

∂2p′

∂t∂x
= 0. (4.26)

5. Discussions of the results
This section is devoted to discussions on the thermoacoustic-wave equations (2.48)

and (4.16) and the approximation of them. It is pointed out firstly that they are
rigorous and equivalent to the system of equations (2.15)–(2.18) and (4.1)–(4.4)
supplemented by (2.5) in the narrow-tube approximation, since no approximations
have been made at all. It is a great merit that the spatial dimension of the original
system is reduced to one dimension, though the price must be paid by having to
treat the memory integrals instead. Provided a solution to p′ were available, the other
variables are determined by tracking back to the formulas expressed in terms of p′.

5.1. Accuracy of uniformity in pressure over the cross-section

That the system is reduced to the one dimension owes to uniformity in pressure
over each cross-section derived as the outcome of the narrow-tube approximation.
Therefore, this approximation may alternatively be called a ‘uniform-pressure
approximation.’

As the uniformity results from neglect of higher-order terms, its accuracy is
discussed. Unless this approximation was made, (2.2), (2.6), (2.7) and (2.5) must
be solved. Let a deviation of p′ from a uniform value p′

uni in each cross-section be
denoted by p′

dev and the pressure be the sum p′
uni + p′

dev. Because the pressure must
satisfy (2.7), it follows that

∂p′
dev

∂t
= −∂p′

uni

∂t
+ ρeTe

(
∂T ′

∂t
+ u′ dTe

dx

)
− ke

(
∂2T ′

∂x2
+

∂2T ′

∂y2

)

− ∂k

∂T

∣∣∣∣∣
e

dTe

dx

∂T ′

∂x
≈ −ke

∂2T ′

∂x2
− ∂k

∂T

∣∣∣∣∣
e

dTe

dx

∂T ′

∂x
, (5.1)
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where T ′ is approximated by the one obtained by the narrow-tube approximation
and (2.18) has been used. The deviatoric pressure is found to be related to the
axial gradient and curvature of T ′ as well as the temperature gradient dTe/dx. The
magnitude of p′

dev/p0 is estimated to be of |δe|2λ2T ′/T0. If (2.14) is assumed, the order
is of |δe|2λ2χ2p′

uni/p0. In order for the deviatoric pressure to be negligible, |δe|λχ [=
(
√

νeω/ae)χ
2] should be much smaller than unity. This condition is usually met at an

audible frequency because
√

νeω/ae =1 for the atmospheric air at ω/2π ≈ 109 Hz.

5.2. Reduction to equation of pressure amplitude for a time-harmonic oscillation

The thermoacoustic-wave equations are capable of describing a spatio-temporal
behaviour of any disturbance in p′ in the framework of the linear theory. If p′

is assumed to be time-harmonic in the form of P (x) exp(iωt), P (x) being a complex
pressure amplitude, then it is verified that (2.48) and (4.16) are reduced to the ordinary
differential equations for P (x) derived by Rott (1969). Noting, for example, that

MP [exp(iωt)] = (iω)−1/2 tanh

[
√

PrH

(
iω

νe

)1/2
]

exp(iωt), (5.2)

equations for P are readily available by reversing the sign of ω in the expressions so
far derived. Following the notations used by Rott (1969), the pressure equations for
P are derived from (2.48) and (4.16) as follows:

ω2[1 + (γ − 1)f ∗
j ]P +

d

dx

[
a2

e (1 − fj )
dP

dx

]
− a2

e

Te

dTe

dx

(
f ∗

j − fj

1 − Pr

)
dP

dx
= 0, (5.3)

where the subscript j distinguishes the cases of the channel and of the circular tube,
respectively, by j = 0 and j = 1, and fj (η0) are defined as

f0(η0) =
tanh η0

η0

and f1(η0) =
2J1(iη0)

iη0J0(iη0)
=

2I1(η0)

η0I0(η0)
, (5.4)

and f ∗
j = fj (

√
Pr η0), η0 being the inverse of δe with the sign of ω reversed as

(iω/νe)
1/2H for the channel and (iω/νe)

1/2R for the circular tube, respectively. Thus it
is found that Rott’s equations are included in (2.48) and (4.16) as a special case.

5.3. Deborah number and Reynolds number

As was defined in § 3.1, the Deborah number is a dimensionless parameter of a
temporal scale in comparison with a diffusion time. By contract, the well-known
Reynolds number Re defined by using a typical speed U as

Re =
UH

νe

, (5.5)

H being replaced by R for the circular tube, may be regarded as a parameter of
a spatial scale which measures a thickness of the viscous diffusion layer νe/U in
comparison with H (or R). If the thermal diffusion layer κe/U is taken on the right-
hand side of (5.5), then it is the Péclet number Pe (≡ ReP r). As the Deborah number
and Reynolds number illuminate, respectively, the temporal and spatial aspects of
the diffusion process, they are independent of each other in general.

For a short-time behaviour from the initial state, a time elapsed is chosen to be
typical, and then the approximate equations (3.9) and (4.24) are well applicable. In
the course of time, the Deborah number decreases, while the diffusion layer is not yet
fully established so that the Reynolds number is not well defined. As the value of De
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becomes smaller than unity, (3.9) and (4.24) tend to be invalid. Then it appears that
no approximations are available so that the full equations (2.48) and (4.16) must be
employed.

Thanks to the properties of the relaxation functions, however, one crude approxim-
ation is to truncate them at a finite time, for example G/

√
πt for the channel at t =0.2,

and to neglect the rapid exponential decay that follows. But this function does not
satisfy (2.43). Another choice is to approximate it by the two asymptotic functions as

1√
πt

G (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
πt

for t < M,

2 exp

(
−π2t

4

)
for t > M,

(5.6)

where a value of M is chosen for (5.6) to satisfy (2.43). This condition gives
M ≈ 0.213 but the discontinuity occurs at t = M with jump of 0.04. For θ(t) in the
case of circular tube, however, inclusion of the higher-order terms given by (4.21)
is necessary to make a jump small, whereas only the leading term is taken in (4.18)
because inclusion of the higher-order terms makes the jump larger. Then M ≈ 0.123
with the jump of 0.077. The point of switch at t = M is located in the middle of the
transition interval in both cases (see figures 2 and 3).

Using (5.6) into (2.45), it consists of the integral in terms of the derivative of minus
half-order and a new integral of (G−1)/

√
πt over the interval 0 � τ � t−(PrH 2/νe)M

for νet/P rH 2 >M . Substitution of this into (2.48) yields (3.9) supplemented by the
new integrals. Here, note that the replacement of ∂2p′/∂t2 in the fourth term of (2.48)
with (∂/∂x)(a2

e ∂p
′/∂x) previously made is not allowable now. But it is found that if

the approximation (5.6) is used, (3.9) may be revived with these modifications.
If a further long time has passed so that the initial state may be forgotten virtually,

this case corresponds to a situation in which the lower bound in the memory integrals
may be regarded as minus infinity. Then the Deborah number vanishes and loses its
significance. What is then taken to be a typical time? If an acoustic field is oscillating
or fluctuating, its period or inverse of a peak frequency in Fourier spectrum should be
taken as a typical time, for example ω−1. Then the Deborah number may be modified
by using this time as

De =
H 2/νe

ω−1
. (5.7)

This is nothing but |δ−2
e | and substantially the Reynolds number because Hω is

regarded as U . Thus, it is the Reynolds number that is the only parameter in this
case.

To summarize the approximations of the thermoacoustic-wave equations so far
made based on the Deborah number and the Reynolds number, figure 4 illustrates
a diagram in the case of the channel indicating qualitatively in which temporal and
spatial domains the approximate equations are valid. For the case of the circular tube
as well, of course, the same diagram is drawn. Here the horizontal axis represents a
typical length ν/U normal to the plate surface, while the vertical axis represents a
time t . A state prior to t =0 is assumed to be undisturbed. The time may be taken
unlimited toward future, whereas the length is limited to be smaller than H by the
plate surface. But this length should be understood as a thickness to be determined by
the diffusion only in the absence of the other plate. The horizontal axis corresponds
to an initial state.
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O

1
Thin diffusion layer   Eq. (3.9) for short-time behaviour

Modified version of Eq. (3.9) based on (2.45) approximated
by (5.6) for intermediate-time behaviour

Moderately thick diffusion layer

Thick diffusion layer

Extremely thick
diffusion layer

Eq. (3.19) for long-
time behaviour

Eq. (3.16) for extremely
long-time behaviour

H

1

Figure 4. Diagram of space and time domains for the approximate equations of the
thermoviscous-wave equation (2.48) for the channel to be valid where the horizontal and
vertical axes measure, respectively, a typical length ν/U normal to the plate surface, U being
a typical axial speed of gas, and a time t , which correspond to Re−1 and De−1, respectively.

The horizontal and vertical axes also measure the inverse of the Reynolds number
and the inverse of the Deborah number, respectively. The unit in the horizontal and
vertical axes corresponds, respectively, to a length for ν/U to be equal to the thickness
H and to a time for t to be equal to the diffusion time H 2/ν. The scales are not linear
but rather logarithmic. Equation (2.48) is valid everywhere in the whole domain.

A domain for De−1 � 1 corresponds to a situation where only a short time has
passed from the initial state. Remember that this time is measured by the diffusion
time. Even if short, it happens in the case of a thin diffusion layer, i.e. a wide tube
that a corresponding dimensional time becomes very long compared with a period of
oscillations. Equation (3.9) is valid in a domain for De−1 less than 0.2 approximately.
But it should be emphasized that (3.9) holds irrespective of the value of Re−1. In the
domain around De−1 ≈ 1 and Re−1 ≈ 1 corresponding to an intermediate time and
a moderately thick diffusion layer, the modified version of (3.9) may be applicable
if G/

√
πt in (2.45) is approximated by using (5.6). Right above this, there spreads a

domain for De−1 
 1 and Re−1 
 1 in which (3.19) holds for a long-time behaviour
and a thick diffusion layer. At the right top corner, where De−1 → ∞ and Re−1 → ∞,
(3.16) may be applicable. For a long-time behaviour, the meaning of the vertical axis
is lost and the approximations should be referred to the horizontal axis, i.e. to the
thickness of diffusion layer only.

5.4. Properties of the approximate wave equations

General properties of the respective approximate equations are discussed. It has been
unveiled that (3.9) and (4.24) in the case of De 
 1 are the same as the equation
derived by the boundary-layer approximation. What is to be emphasized again is
that they are always valid as long as De is large, whatsoever the thickness of the
thermoviscous layer may be. This may be a reason why the initial instability is
described by the boundary-layer theory (Sugimoto & Shimizu 2008). Equations (3.9)
and (4.24) are also obtained if a formal limit as H → ∞ or R → ∞ is taken in
the memory integrals. Thus they may be regarded as the approximation for a wide
tube. Even if a long time has passed, they are applicable as long as νet/H

2 is much
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smaller than unity, and then the lower bound of the integral may be set to be minus
infinity by a shift of time origin. But it is a merit to find that (3.9) and (4.24) may be
employed beyond the range of validity, if appropriate modifications are included.

In this connection, reference is made to the equations in a case without temperature
gradient. With dTe/dx = 0, (4.24) is simply (3) in Sugimoto & Horioka (1995) (if the
diffusivity of sound νd is negligible) derived on the basis of the boundary-layer theory
developed by Chester (1964) (see also pp. 519–525 in Blackstock 2000). Chester gave
the memory integral but did not use the derivative of minus half-order defined by
(3.11). For use of fractional calculus in this context, see Sugimoto (1989). The constant
C should be attributed to Kirchhoff. It consists of two factors, 1 and (γ − 1)/

√
Pr ,

which stem from the shear stress and the heat flux at the plate surfaces, respectively.
This is found from (2.37) with (4.14) and (4.15). When temperature gradient is present,
the other constant CT appears, which is the coefficient of T −1

e dTe/dx involved in the
velocity v at the edge of the boundary layer to be shown in (5.17).

For De � 1, on the other hand, the equation in the form of (3.16) is derived, to the
lowest approximation, for the circular tube as well, though the value of the diffusivity
α is different. If no temperature gradient is present, then the third term vanishes
and (3.16) is reduced simply to the diffusion equation. Its time-harmonic solution
propagating toward the positive direction of x while decaying is easily obtained in
the form of exp(iωt − mx) with m > 0, where m2 is given by m2 = iω/α. The value
of m agrees with those obtained by Rayleigh (1945) for the channel and the circular
tube in his ‘narrow tube’ ((29) and (24) on pp. 327–328) corresponding to a case of
thick diffusion layer in the present context.

Rewriting m as iω/c in the form of exp[iω(t − x/c)], the complex phase velocity c

is given by (1 + i)
√

αω/2. For the circular tube, in particular, this velocity is given by

c =

(
1 + i

4

)
R√
ν0/ω

a0√
γ

. (5.8)

For the channel, R/4 is replaced by H/
√

6. Note that, a0/
√

γ is the isothermal sound

speed, while R/
√

ν0/ω is the ratio of the thickness of the diffusion layer to the radius,
which is much smaller than unity, i.e. |δe|−1 � 1. Thus, c becomes even slower than
the isothermal sound speed by |δ|−1. For R = 0.1 mm, the real part of (5.8) takes 47.2
m/s for ω/2π = 100 Hz in the atmospheric air at 15◦C, for which |δe|−1≈ 0.658.

Now the effect of the temperature gradient is discussed. The coefficient of ∂p′/∂x

in the third term of (3.16) is denoted by V as

V (x) =
α

Te

dTe

dx
=

a2
eH

2

3γ νeTe

dTe

dx
, (5.9)

where H 2/3 is replaced by R2/8 for the circular tube. Note that V has a dimension
of speed and the sign is determined by the temperature gradient. This velocity is
brought about by the action of diffusion in the presence of the temperature gradient.
If the temperature varies according to (Te/T0)

β =1/(1 − βV0x/α0), T0, α0 and V0

implying, respectively, the values of Te, α and V at x = 0, then V takes a constant
equal to V0 everywhere. Supposing that T −1

e dTe/dx is 10 m−1 at x = 0 and 15◦C for
the atmospheric air enclosed in a circular tube with R = 0.1mm, it is found that V0

takes 71.1 m/s.
For the sake of simplicity, the temperature dependence of the viscosity and thermal

conductivity is ignored in the following. Then β is set to be zero so that α is a
constant, independent of the temperature. Further if the temperature distribution is
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assumed to be exponential in the form of exp(x/l), then T −1
e dTe/dx becomes constant

and so does V . Then the solution of (3.16) is easily anticipated. If a spatial frame
moving with V is introduced, (3.16) may be written as the diffusion equation in this
frame. While the diffusion in the presence of the temperature gradient yields the wave
propagation, it is found that no active action occurs in the case that the diffusion
layer is extremely thick.

This prompts us to examine effects by the higher-order equations (3.19) and (4.26).
Suppose that the temperature gradient is so steep that the third term may surpass
the second term and therefore the first term for evolution balances mainly with the
third one, i.e. ∂p′/∂t + V ∂p′/∂x ≈ 0 to the lowest order. Using this approximation,
the time derivatives in the higher-order equation are expressed in terms of the spatial
derivative. Then (3.19) and (4.26) are expressed in the following form:

∂p′

∂t
+ V

∂p′

∂x
= D

∂2p′

∂x2
, (5.10)

where the diffusion coefficient D is given by

D = α
{
1 − [nγ (2 + Pr) − (γ − 1)Pr] V 2/a2

e

}
, (5.11)

where n is 6/5 for the channel and 4/3 for the circular tube, and β has already been
set equal to zero. If the temperature gradient is assumed to be steep enough to make
D negative for plausible values of γ and Pr , the higher-order terms will contribute
to a negative diffusion. Hence, it is expected that the temperature gradient will give
rise to instability convected with the velocity V .

5.5. Approximation of the acoustic field

Finally the acoustic field is discussed in two approximations. It has already been
noted that the equations (2.15)–(2.18) and (2.5) are the same as those derived for
the boundary layer ((4.1)–(4.4) in Sugimoto & Tsujimoto 2002). If the second-order
derivatives with respect to y for the viscosity and heat condition are dropped, they
are simply the equations for lossless and one-dimensional propagation. Keeping this
in mind, approximation of the acoustic field is considered.

If a thin diffusion layer is concerned, i.e. |δe| � 1, then the acoustic field outside of
the diffusion layer is almost uniform over the cross-section. In fact, f and fP given by
(2.22) and (2.25) for the channel are approximated to be unity because, for example

cosh(y
√

Pr/Hδe)

cosh(
√

Pr/δe)
≈ exp

[
−

√
Pr

δe

(
1 − |y|

H

)]
. (5.12)

For the circular tube, fP given by (4.8) is approximated by (5.12) with |y|/H replaced
by r/R. In the outside of the diffusion layer where 1 − |y|/H 
 |δe|, the contribution
by (5.12) is exponentially small. Then (2.21) and (2.24) are simply the transformed
relations derived from (2.16) and (2.18) with the y-dependence dropped. The neglect
of the diffusion terms is thus justified by the above approximation, and the neglect of
∂v′/∂y will be shown to be appropriate below.

Among the physical variables, above all v′ is interesting to be examined. In (2.27),
for example, gP is approximated as

sinh(y
√

Pr/Hδe)

cosh(
√

Pr/δe)
≈ sgny exp

[
−

√
Pr

δe

(
1 − |y|

H

)]
, (5.13)
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so that g and gP are negligible in the outside of the diffusion layer. Thus v′ changes
linearly with y (or r) in each cross-section. At the edge of the boundary layer where
|y| ≈ H but (1 − |y|/H )/|δe| 
 1, v̂′ in (2.27) may be approximated as

v̂′ ≈ − 1

ρea2
e

[
σ p̂′ − ∂

∂x

(
a2

e σ
−1 ∂p̂′

∂x

)]
H, (5.14)

where the boundary layer adjacent to the plate at y =H is concerned. For the circular
tube, H is replaced by R/2. The factor bracketed in (5.14) corresponds to the first
two terms in (2.30). When they are replaced by the remaining terms in (2.30), v̂′ is
found to be proportional to

√
νe and the magnitude of v̂′ is estimated to be smaller

than the one of û′ by the factor |δe|λ. Thus the neglect of v′ is justified.
By executing the above replacement and setting g = gP = 1, v̂′ is written as

v̂′ =

√
νe

ρea2
e

(
Cσ 1/2p̂′ + CT

a2
e

Te

dTe

dx
σ −3/2 ∂p̂′

∂x

)
, (5.15)

where the lowest relation has been used for the lossless propagation σ 2p̂′ =
(∂/∂x)(a2

e ∂p̂′/∂x) to remove the second-order derivative with respect to x. To make
a comparison with the velocity derived previously by the boundary-layer theory,
(5.15) is rewritten in terms of û′. Using the transformed relations for the lossless
propagation: σ p̂′/ρea

2
e + ∂û′/∂x = 0 and ρeσ û′ = −∂p̂′/∂x, the first being simply the

equation of continuity (2.15) and rewritten by expressing ρ̂ ′ in terms of p̂′ ((4.8) in
Sugimoto & Tsujimoto 2002), it follows that v̂′ is expressed as

v̂′ = −√
νe

(
Cσ −1/2 ∂û′

∂x
+

CT

Te

dTe

dx
σ −1/2û′

)
. (5.16)

The inverse transform of (5.16) yields

v′ = −√
νe

[
C

∂−1/2

∂t−1/2

(
∂u′

∂x

)
+

CT

Te

dTe

dx

∂−1/2u′

∂t−1/2

]
. (5.17)

This relation agrees perfectly with −vb derived by the boundary-layer theory ((4.22)
in Sugimoto & Tsujimoto 2002) where vb is taken positive when directed away from
the wall and β in CT is set equal to zero. The relation (5.17) is also valid in the case
of the circular tube as it is.

In a similar fashion, the shear stress s acting on the gas at both plate surfaces is
given by

s = 2
√

νe

∂−1/2

∂t−1/2

(
∂p′

∂x

)
, (5.18)

while the heat flux q flowing into the gas through them is given by

q = 2ρecpTe

√
νe

[
(C − 1)

∂−1/2

∂t−1/2

(
∂u′

∂x

)
+

(
CT − 1

2
− 1

2
β

)
1

Te

dTe

dx

∂−1/2u′

∂t−1/2

]
. (5.19)

These may also be available directly from (2.44) and (2.46). The heat flux through one
plate q/2 agrees with the result previously obtained ((4.24) in Sugimoto & Tsujimoto
2002) and holds for the circular tube.

Next, the opposite case for the thick diffusion layer with |δe| ∼ χ 
 1 is concerned.
The functions f and g without and with the subscript P are now expanded into the
power series of δ−1

e . For the case of the channel, for example fP in (2.25) and gP in
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(2.29), are approximated, respectively, as

fP =
Prσ

2νe

(H 2 − y2), (5.20)

and

gP =

√
Pr σ 1/2

√
νe

[
1 +

Prσ

νe

(
y2

6
− H 2

2

)]
. (5.21)

Thus the axial velocity is given by

u′ = − 1

2µe

∂p′

∂x
(H 2 − y2). (5.22)

This distribution is simply that of the Poiseulle flow of incompressible fluids driven
by a pressure gradient. But there appears v′ in this case, which is given by

v′ =
γ

2ρea2
eH

2

∂p′

∂t

(
H 2 − y2

)
y, (5.23)

where the lowest approximation (3.16) has been used. To this approximation, the
temperature disturbance T ′ is taken to vanish everywhere since the channel is too
narrow for the temperature to change from the one imposed by the boundary
condition.

Using (5.22) and (5.23), the order of magnitudes of u′ and v′ is estimated in terms
of p′/p0 as

u′

ae

∼ 1

|δe|
p′

p0

and v′ ∼ λu′. (5.24)

Since |δe| 
 1 so that the axial pressure gradient balances with the viscous term,
the first estimate is different from (2.13). By the isothermal approximation with
T ′ = 0, ρ ′ may be set equal to ρep

′/p0 (= γp′/a2
e ). Using this in (2.32) and also

ρeū
′ = −(H 2/3νe)∂p

′/∂x calculated by (5.22), it is found that (3.16) is recovered. Thus
(3.16) may be regarded as the equation of continuity averaged and expressed in terms
of p′. Of course it is also verified that (5.22) and (5.23) satisfy (2.15) locally, as far
as the lowest approximation (3.16) is concerned. Using (5.23), in passing, the order of
terms neglected in (2.17) is checked. Because ρe∂v′/∂t is smaller in magnitude than
µe∂

2v′/∂y2 by |δe|−2, ∂p′
dev/∂y balances with the latter. Thus p′

dev is found to be of
order λ2p′

uni.
If the higher-order approximation is concerned, then a small change in T ′ is

obtained by (2.24) as

T ′ =
1

2ke

∂p′

∂t
(H 2 − y2) +

Pr

24ρeν2
e

dTe

dx

∂p′

∂x
(5H 4 − 6H 2y2 + y4), (5.25)

where both terms are of the same order as long as |δe| ∼ χ and the order of magnitude
of T ′/Te is found to be smaller than that of p′/p0 by |δe|−2. The temperature gradient
gives rise to a quartic distribution in y in addition to the quadratic one in the case
of no gradient. Using the distribution (5.25) and higher-order terms in (5.22), (3.17)
follows from (2.32). The first and second terms in (5.25) yield parts of the fourth
and fifth terms in (3.19), respectively. For the circular tube, the factor (H 2 − y2) in
(5.22) and (5.25) is replaced by (R2 − r2)/2, while (1 − y2/H 2)y in (5.23) is replaced
by (1 − r2/R2)r . The quartic distribution (5H 4 − 6H 2y2 + y4)/24 in (5.25) is replaced
by (3R4 − 4R2r2 + r4)/64.



Thermoacoustic-wave equations in a channel and a tube 115

Finally, the shear stress and the heat flux from the plate surfaces are given,
respectively, by

s = 2
∂p′

∂x
H, (5.26)

and

q = −2
∂p′

∂t
H, (5.27)

where H is replaced by R/4 for the circular tube. Note that no viscosity and heat
conduction appear. These relations result from the right-hand sides of (2.33) and
(2.34) because the axial velocity and the temperature change are so little that the
left-hand side may be negligible.

6. Conclusions
This paper has developed a general theory for linear propagation of acoustic waves

in the gas enclosed in the two-dimensional channel and in the circular tube subject
to temperature gradient axially. In the framework of the narrow-tube approximation,
the respective systems of basic equations for the gas are reduced rigorously to the
one-dimensional, integro-differential equations for the excess pressure. Essence of
the thermoacoustic effects lies in the memory integrals. The thermoacoustic-wave
equations thus derived are general and always valid.

But the approximations of the equations are useful in discussing a short-time and a
long-time behaviour, which correspond, respectively, to the case with large H (or R)
and the one with small H (or R). For a short-time behaviour, the equations are reduced
to simply the one derived previously by the boundary-layer theory. It now turns out
that the boundary-layer theory is valid in any case as long as the Deborah number
remains large. This is the reason why the boundary-layer theory is applicable to derive
the marginal conditions of initial instability. But as this number becomes smaller than
unity, it is limited to a case in which the diffusion layer is thin. Nevertheless, it is
expected to be applicable to some problems just as Kirchhoff’s theory for a wide tube
is useful even when the thickness of a diffusion layer becomes comparable with the
tube radius. This is endorsed by the finding that the equations valid for a large value
of the Deborah number are still applicable if some modifications are introduced.

For a long-time behaviour as the Deborah number tends to vanish, the memory due
to the thermoviscous effects disappears and the simple diffusion revives. It is revealed
that the temperature gradient gives rise to wave propagation but no instability occurs
after an extremely long time. This also suggests no instability if the diffusion layer is
extremely thick. As temperature gradient becomes steeper, however, it may happen
that the higher-order terms give rise to negative diffusion and convective instability
over a long time even if the diffusion layer is thick. To expect the instability, therefore,
the span should not be taken too narrow. Hence, the thermoacoustic-wave equations
cover any situation which will occur in the channel and the tube, and they also
provide the basis of the approximations depending on situations of interest.
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